Sunday, 28 March 2021

Sunday, 14 June 2020

The Mathematicall Praeface to Elements of Geometrie of Euclid of Megara John Dee

full book at: https://www.gutenberg.org/files/22062/22062-h/22062-h.htm

text linked below

 TO THE VNFAINED LOVERS
of truthe, and constant Studentes of Noble
Sciences, IOHN DEE of London, hartily

wisheth grace from heauen, and most prosperous
successe in all their honest attemptes and
exercises.
D(Divine)Iuine Plato, the great Master of many worthy Philosophers, and the constant auoucher, and pithy perswader of VnumBonum, and Ens: in his Schole and Academie, sundry times (besides his ordinary Scholers) was visited of a certaine kinde of men, allured by the noble fame of Plato, and the great commendation of hys profound and profitable doctrine. But when such Hearers, after long harkening to him, perceaued, that the drift of his discourses issued out, to conclude, this VnumBonum, and Ens, to be Spirituall, Infinite, Æternall, Omnipotent, &c. Nothyng beyng alledged or expressed, How, worldly goods: how, worldly dignitie: how, health, Strẽgth or lustines of body: nor yet the meanes, how a merueilous sensible and bodyly blysse and felicitie hereafter, might be atteyned: Straightway, the fantasies of those hearers, were dampt: their opinion of Plato, was clene chaunged: yea his doctrine was by them despised: and his schole, no more of them visited. Which thing, his Scholer, Aristotle, narrowly cõsidering, founde the cause therof, to be, For that they had no forwarnyng and information, in generall, whereto his doctrine tended. For, so, might they haue had occasion, either to haue forborne his schole hauntyng: (if they, then, had misliked his Scope and purpose) or constantly to haue continued therin: to their full satisfaction: if such his finall scope & intent, had ben to their desire. Wherfore, Aristotle, euer, after that, vsed in brief, to forewarne his owne Scholers and hearers, both of what matter, and also to what ende, he tooke in hand to speake, or teach. While I consider the diuerse trades of these two excellent Philosophers (and am most sure, both, that Plato right well, otherwise could teach: and that Aristotle mought boldely, with his hearers, haue dealt in like sorte as Plato did) I am in no little pang of perplexitie: Bycause, that, which I mislike, is most easy for me to performe (and to haue Plato for my exãple.) And that, which I know to be most commendable: and (in this first bringyng, into common handling, the Artes Mathematicall) to be most necessary: is full of great difficultie and sundry daungers. Yet, neither do I think it mete, for so straunge matter (as now is ment to be published) and to so straunge an audience, to be bluntly, at first, put forth, without a peculiar Preface: Nor (Imitatyng Aristotle) well can I hope, that accordyng to the amplenes and dignitie of the State Mathematicall, I am able, either playnly to prescribe the materiall boundes: or precisely to expresse the chief purposes, and most wonderfull applications therof. And though I am sure, that such as did shrinke from Plato his schole, after they had perceiued his finall ||conclusion, would in these thinges haue ben his most diligent hearers (so infinitely mought their desires, in fine and at length, by our Artes Mathematicall be satisfied) yet, by this my Præface & forewarnyng, Aswell all such, may (to their great behofe) the soner, hither be allured: as also the Pythagoricall, and Platonicall perfect scholer, and the constant profound Philosopher, with more ease and spede, may (like the Bee,) gather, hereby, both wax and hony.
Wherfore, seyng I finde great occasion (for the causes alleged, and farder, in respect of my Art Mathematike generall) to vse a certaine forewarnyng and Præface, whose content shalbe, The intent of this Preface.that mighty, most plesaunt, and frutefull Mathematicall Tree, with his chief armes and second (grifted) braunches: Both, what euery one is, and also, what commodity, in generall, is to be looked for, aswell of griff as stocke: And forasmuch as this enterprise is so great, that, to this our tyme, it neuer was (to my knowledge) by any achieued: And also it is most hard, in these our drery dayes, to such rare and straunge Artes, to wyn due and common credit: Neuertheles, if, for my sincere endeuour to satisfie your honest expectation, you will but lend me your thãkefull mynde a while: and, to such matter as, for this time, my penne (with spede) is hable to deliuer, apply your eye or eare attentifely: perchaunce, at once, and for the first salutyng, this Preface you will finde a lesson long enough. And either you will, for a second (by this) be made much the apter: or shortly become, well hable your selues, of the lyons claw, to coniecture his royall symmetrie, and farder propertie. Now then, gentle, my frendes, and countrey men, Turne your eyes, and bend your myndes to that doctrine, which for our present purpose, my simple talent is hable to yeld you.
All thinges which are, & haue beyng, are found vnder a triple diuersitie generall. For, either, they are demed Supernaturall, Naturall, or, of a third being. Thinges Supernaturall, are immateriall, simple, indiuisible, incorruptible, & vnchangeable. Things Naturall, are materiall, compounded, diuisible, corruptible, and chaungeable. Thinges Supernaturall, are, of the minde onely, comprehended: Things Naturall, of the sense exterior, ar hable to be perceiued. In thinges Naturall, probabilitie and coniecture hath place: But in things Supernaturall, chief demõstration, & most sure Science is to be had. By which properties & comparasons of these two, more easily may be described, the state, condition, nature and property of those thinges, which, we before termed of a third being: which, by a peculier name also, are called Thynges Mathematicall. For, these, beyng (in a maner) middle, betwene thinges supernaturall and naturall: are not so absolute and excellent, as thinges supernatural: Nor yet so base and grosse, as things naturall: But are thinges immateriall: and neuerthelesse, by materiall things hable somewhat to be signified. And though their particular Images, by Art, are aggregable and diuisible: yet the generall Formes, notwithstandyng, are constant, vnchaungeable, vntrãsformable, and incorruptible. Neither of the sense, can they, at any tyme, be perceiued or iudged. Nor yet, for all that, in the royall mynde of man, first conceiued. But, surmountyng the imperfectiõ of coniecture, weenyng and opinion: and commyng short of high intellectuall cõceptiõ, are the Mercurial fruite of Dianœticall discourse, in perfect imagination subsistyng. A meruaylous newtralitie haue these thinges Mathematicall, and also a straunge participatiõ betwene thinges supernaturall, immortall, intellectual, simple and indiuisible: and thynges naturall, mortall, sensible, compounded and diuisible. Probabilitie and sensible prose, may well serue in thinges naturall: and is commendable: In Mathematicall reasoninges, a probable Argument, is nothyng regarded: nor yet the testimony of sense, any whit credited: But onely a perfect demonstration, of truthes certaine, necessary, and inuincible: vniuersally and necessaryly concluded: *.iis allowed as sufficient for an Argument exactly and purely Mathematical.
Of Mathematicall thinges, are two principall kindes: namely, Number, and MagnitudeNumber.Number, we define, to be, a certayne Mathematicall Sũme, of VnitsNote the worde, Vnit, to expresse the Greke Monas, & not Vnitie: as we haue all, commonly, till now, vsed.And, an Vnit, is that thing Mathematicall, Indiuisible, by participation of some likenes of whose property, any thing, which is in deede, or is counted One, may resonably be called One. We account an Vnit, a thing Mathematicall, though it be no Number, and also indiuisible: because, of it, materially, Number doth consist: which, principally, is a thing MathematicallMagnitude.Magnitude is a thing Mathematicall, by participation of some likenes of whose nature, any thing is iudged long, broade, or thicke. A thicke Magnitude we call a Solide, or a Body. What Magnitude so euer, is Solide or Thicke, is also broade, & long. A broade magnitude, we call a Superficies or a Plaine. Euery playne magnitude, hath also length. A long magnitude, we terme a Line. A Line is neither thicke nor broade, but onely long: Euery certayne Line, hath two endes: A point.The endes of a line, are Pointes called. A Point, is a thing Mathematicall, indiuisible, which may haue a certayne determined situation. If a Poynt moue from a determined situation, the way wherein it moued, is also a Line: mathematically produced, whereupon, of the auncient Mathematiciens, A Line.Line is called the race or course of a Point. A Poynt we define, by the name of a thing Mathematicall: though it be no Magnitude, and indiuisible: because it is the propre ende, and bound of a Line: which is a true MagnitudeMagnitude.And Magnitude we may define to be that thing Mathematicall, which is diuisible for euer, in partes diuisible, long, broade or thicke. Therefore though a Poynt be no Magnitude, yet Terminatiuely, we recken it a thing Mathematicall (as I sayd) by reason it is properly the end, and bound of a line. Neither Number, nor Magnitude, haue any Materialitie. First, we will consider of Number, and of the Science Mathematicall, to it appropriate, called Arithmetike: and afterward of Magnitude, and his Science, called Geometrie. But that name contenteth me not: whereof a word or two hereafter shall be sayd. How Immateriall and free from all matter, Number is, who doth not perceaue? yea, who doth not wonderfully wõder at it? For, neither pure Element, nor Aristoteles, Quinta Essentia, is hable to serue for Number, as his propre matter. Nor yet the puritie and simplenes of Substance Spirituall or Angelicall, will be found propre enough thereto. And therefore the great & godly Philosopher Anitius Boetius, sayd: Omnia quæcunque a primæua rerum natura constructa sunt, Numerorum videntur ratione formata. Hoc enim fuit principale in animo Conditoris Exemplar. That is: All thinges (which from the very first originall being of thinges, haue bene framed and made) do appeare to be Formed by the reason of Numbers. For this was the principall example or patterne in the minde of the Creator. O comfortable allurement, O rauishing perswasion, to deale with a Science, whose Subiect, is so Auncient, so pure, so excellent, so surmounting all creatures, so vsed of the Almighty and incomprehensible wisdome of the Creator, in the distinct creation of all creatures: in all their distinct partes, properties, natures, and vertues, by order, and most absolute number, brought, from Nothing, to the Formalitie of their being and state. By Numbers propertie therefore, of vs, by all possible meanes, (to the perfection of the Science) learned, we may both winde and draw our selues into the inward and deepe search and vew, of all creatures distinct vertues, natures, properties, and Formes: And also, farder, arise, clime, ascend, and mount vp (with Speculatiue winges) in spirit, to behold in the Glas of Creation, the Forme of Formes, the Exemplar Number of all thinges Numerable: both visible and inuisible, mortall and ||immortall, Corporall and Spirituall. Part of this profound and diuine Science, had Ioachim the Prophesier atteyned vnto: by Numbers Formall, Naturall, and Rationall, forseyng, concludyng, and forshewyng great particular euents, long before their comming. His bookes yet remainyng, hereof, are good profe: And the noble Earle of Mirandula, (besides that,) a sufficient witnesse: that Ioachim, in his prophesies, proceded by no other way, then by Numbers Formall. And this Earle hym selfe, in Rome, Ano. 1488.*set vp 900. Conclusions, in all kinde of Sciences, openly to be disputed of: and among the rest, in his Conclusions Mathematicall, (in the eleuenth Conclusion) hath in Latin, this English sentence. By Numbers, a way is had, to the searchyng out, and vnderstandyng of euery thyng, hable to be knowen. For the verifying of which Conclusion, I promise to aunswere to the 74. Questions, vnder written, by the way of Numbers. Which Cõclusions, I omit here to rehearse: aswell auoidyng superfluous prolixitie: as, bycause Ioannes Picus, workes, are commonly had. But, in any case, I would wish that those Conclusions were red diligently, and perceiued of such, as are earnest Obseruers and Considerers of the constant law of nũbers: which is planted in thyngs Naturall and Supernaturall: and is prescribed to all Creatures, inuiolably to be kept. For, so, besides many other thinges, in those Conclusions to be marked, it would apeare, how sincerely, & within my boundes, I disclose the wonderfull mysteries, by numbers, to be atteyned vnto.

THE WAY TO GEOMETRY. Being necessary and usefull, For Astronomers. Engineres. Geographers. Architecks. Land-meaters. Carpenters. Sea-men. Paynters. Carvers, &c.

full book at: https://www.gutenberg.org/files/26752/26752-h/26752-h.htm

The Authors Preface.

Two things, I feare me, will here be objected against me: The one concerneth my selfe, directly: The other mine Author, and the worke I have taken in hand the translating of him. Concerning my selfe, I suppose, some will aske, Why I being a Divine; should meddle or busie my selfe with these prophane studies? Geometry may no way further Divinity, and therefore is no fit study for a Divine? This objection seemeth to smell of Brownisme, that is, of a ranke peevish humour overflowing the stomach of some, whereby they are caused to loath all manner of solid learning, yea of true Divinity it selfe, and therefore it doth not deserve an answer: And this we in our Title before signified. For we have not taken this paines for Turkes and others, who by the lawes of their profession are bound to abandon all manner of learning. But if any man shall propose it, as a question, with a desire of satisfaction, we are ready to answer him to the best of our abilitie. First, that Theologia vera est ars artium & scientia scientiarum, Divinity is the Art of Arts, and Science of Sciences; or Divinity is the Mistresse upon which all Arts and Sciences are to attend as servants and handmaides. And why then not Geometry? But in what place she should follow her, I dare not say: For I am no herald, and therefore I meddle not with precedencie: But if I were, she should be none of the hindermost of her traine.
The Oratour saith, and very truly doubtlesse, That, Omnes artes, quæ ad humanitatē pertinent, habent commune quoddam vinculum, & cognatione quadam inter se continentur. All Arts which pertaine unto humanity, they have a certaine common bond, and are knit together by a kinde of affinity. If then any Arts and Sciences may be thought necessary attendants upon this great Lady; Then surely Geometry amongst the rest must needes be one: For otherwise her traine will be but loose and shattered.
Plato saith τὸν θεὸν ἀκεὶ γεωμετρεῖνThat God doth alwayes worke by Geometry, that is, as the wiseman doth interprete it, Sap. XI. 21. Omnia in mensura & numero & pondere disponere. Dispose all things by measure, and number, and weight: Or, as the learned Plutarch speaketh; He adorneth and layeth out all the parts of the world according to rate, proportion, and similitude. Now who, I pray you, understandeth what these termes meane, but he which hath some meane skill in Geometry? Therefore none but such an one, may be able to declare and teach these things unto others.
How many things are there in holy Scripture which may not well be understood without some meane skill in Geometry? The Fabricke and bignesse of Noah's Arke: The Sciagraphy of the Temple set out by Ezechiel, Who may understand, but he that is skilfull in these Arts? I speake not of many and sundry words both in the New and Old Testaments, whose genuine and proper signification is merely Geometricall: And cannot well be conceived but of a Geometer.
And here, that I may speake it without offence, I would have it observed, how many men, much magnified for learning, not onely in their speeches, which alwayes are not premeditated, but even in their writings, exposed to the view and censure of all men, doe often paralogizein, speake much, and little to the purpose. This they could not so easily and often doe, if they had beene but meanely practised in these kinde of studies. Wherefore that Epigramme which was used to be written over their Philosophy Schoole doores, οὐδῆις ἀγεωμέτρητος εἴσιτωNo man ignorant of Geometry come within these doores: Now written over our Divinitie Schooles. And if any man shall thinke this an hard sentence, let him heare what Saint Augustine saith in the same case, Nemo ad divinarum humanarumq; rerum cognitionem accedat, nisi prius annumerandi artem addiscat: Let no man come neither within the Divinity nor Philosophy Schooles, except he have first learned Arithmeticke. Now that the one of these Arts cannot be learned without the other; Euclide our great Master, who made but one of both, hath sufficiently demonstrated.
If I should alledge the like practise of famous Divines, greatly admired for their great skill in this profession, as T. Peckham Arch-Bishop of Canterbury, Maurolycus Bishop of Messana in Sicilia, Cusanus Cardinall of Rome, and many others, before indifferent judges, I am sure I should not be condemned. Who doth not greatly magnifie the grave Seb. Munster, the nimble Ph. Melanchthon, and the noble Bernardino Baldo Abbot of Guastill, and the painefull Barth. Pitiscus of Grunberg, for their knowledge and paines in these Arts and Sciences? And thus much shall at this time suffice, to have spoken unto the first Question: If any shall require further satisfaction, those I referre unto the forenamed Authors, whose authority peradventure may more prevaile with them, then my reasons may.
The next is concerning mine Author, and the worke in hand Geometry, it must needs be confest we are beholden to Euclides Elements for: And he that would be rich in that profession, may have, if he be not covetous, his fill there, if he will labour hard, and take paines for it, it is true. But in what time thinke yau, may a man learne all Euclide, and so by him be made skilfull in this Art? By himselfe I know not whether ever or never: And with the helpe of another, although very expert, I will not promise him that hee shall attaine to perfection in many yeares.
Hippocrates the Prince of Physicians hath, as they say, in his workes laid out the whole Art of Physicke; but I marvell how long a man should study him alone, and read him over and over, before he should be a good Physician? I feare mee all the friends that he hath, and neighbours round about him, yea, and himselfe too, would all die before he should be able to hele them, or per adventure ere he should be able to know what they ail'd; and after 30, or 40. yeeres of such his study, I would be very loath to commit my selfe unto him. How much therefore are the students of this noble Science beholding unto those men, who by their industry, practise, and painefull travells, have shewed them a ready and certaine way through this wildernesse?
The Elements of Euclide they do containe generally the whole art of Geometry: But if you will offer to travell thorow them alone, you shall finde them, I will warrant you, Elements indeed: for there you may walke through the spacious Aire, and over the great and wide sea, and in and about the vaste and arid wildernesse many a day and night, before you shall know where you are. This Ramus, my Authour in reading him found to be true; and confesseth himselfe often to have beene at a stand: Often to have lost himselfe: Often to have hitte upon a rocke, when he had thought he had touch'd land.
Least therefore other men, in this journey doe not likewise loose themselves, for the benefit and safety, I meane, of others he hath prick'd them out a charde or chack'd out a way, which if thou shalt please to follow, it shall lead thee to thy wayes end, as directly, and in as short time, as conveniently may be. Yet in what time I cannot warrant thee: For all mens capacity, especially in these Arts, is not alike: All are not a like painefull, industrious, or diligent: All are not of the same ability of body, to be able to continue or sit at it: Or all not so free from other imployments or businesse calling them from their study, as some others are. For know this for certaine, Thou shalt here make no great progresse, except thou doe make it as it were a continued labour, Here you must observe that rule of the great Painter, Nulla dies sine linea, Let no day passe over your head, in which you draw not some diagram or figure or other.
One other thing let me also advise thee of, how capable soever thou art, refuse not, if thou maist have it, the helpe of a teacher; For except thou be another Hippocrates or Forcatelus, whō our Authour mentioneth, thou canst not in these Arts and Sciences attaine unto any great perfection without infinite patience and great losse of most precious time, For they are therefore called Μαθηματικόι, Mathematicks, that is, doctrinal or disciplinary Arts, because they are not to be attained unto by our owne information and industry; but by the helpe and instruction of others.
This Worke gentle Reader, was in part above 30. yeares since published by M. Thomas Hood, a learned man, and loving friend of mine, who teaching these Arts, in the Staplers Chappell in Leadenhall London, for the benefit of his Schollers and Auditory, did set out the Elements apart by themselves. The whole at large, with the Diagrammes, and Demonstrations, hee promised, as appeareth in the Preface to that his Worke, at his convenient leysure to send out shortly, after them. This for ought we know or can learne, is not by him or any other performed: And yet are those alone, without these of small use or none to a learner, where a teacher is not alwayes at hand. Wherefore we are bold being (encouraged thereunto by some private friends, and especially by the learned M. H. Brigges, professour of Geometry in the famous Vniversity of Oxford) to publish this of ours long since finished and ended.
The usuall termes, whether Latine or Greeke, commonly used by the Geometers, we have set downe and expressed in English, as well as we could, as others, writing of this argument in our language, have done before us. These termes, I doubt not, may by some in English otherwise be expressed, but how harsh those termes, may unto Mathematicall eares, at the first appeare, I will not say; and use in short time will make these familiar, and as pleasing to the eare as those possibly may be.
Our Authour, in the declaration of the Elements hath many passages, which in our judgement doe not make so much for the understanding of the matter in hand, as for the defence of the method here used, against Aristotle, Euclide, Proclus, and others, which we have therfore wholly omitted. Some other things, which in our opinion, might in some respect illustrate any particular in this businesse, we have here and there inserted. Out of the learned Finkius's Geometria Rotundi, Wee have added to the fifth Booke certaine Propositions with their Consectaries out of Ptolomi's Almagest. The painfull and diligent Rod. Snellius out of the Lectures and Annotations of B. Salignacus, I. Tho. Freigius, and others, hath illustrated and altered here and there some few things.

AMUSEMENTS IN MATHEMATICS by HENRY ERNEST DUDENEY

FULL BOOK AT: https://www.gutenberg.org/files/16713/16713-h/16713-h.htm

PREFACE

In issuing this volume of my Mathematical Puzzles, of which some have appeared in periodicals and others are given here for the first time, I must acknowledge the encouragement that I have received from many unknown correspondents, at home and abroad, who have expressed a desire to have the problems in a collected form, with some of the solutions given at greater length than is possible in magazines and newspapers. Though I have included a few old puzzles that have interested the world for generations, where I felt that there was something new to be said about them, the problems are in the main original. It is true that some of these have become widely known through the press, and it is possible that the reader may be glad to know their source.
On the question of Mathematical Puzzles in general there is, perhaps, little more to be said than I have written elsewhere. The history of the subject entails nothing short of the actual story of the beginnings and development of exact thinking in man. The historian must start from the time when man first succeeded in counting his ten fingers and in dividing an apple into two approximately equal parts. Every puzzle that is worthy of consideration can be referred to mathematics and logic. Every man, woman, and child who tries to "reason out" the answer to the simplest puzzle is working, though not of necessity consciously, on mathematical lines. Even those puzzles that we have no way of attacking except by haphazard attempts can be brought under a method of what has been called "glorified trial"—a system of shortening our labours by avoiding or eliminating what our reason tells us is useless. It is, in fact, not easy to say sometimes where the "empirical" begins and where it ends.
When a man says, "I have never solved a puzzle in my life," it is difficult to know exactly what he means, for every intelligent individual is doing it every day. The unfortunate inmates of our lunatic asylums are sent there expressly because they cannot solve puzzles—because they have lost their powers of reason. If there were no puzzles to solve, there would be no questions to ask; and if there were no questions to be asked, what a world it would be! We should all be equally omniscient, and conversation would be useless and idle.
It is possible that some few exceedingly sober-minded mathematicians, who are impatient of any terminology in their favourite science but the academic, and who object to the elusive x and y appearing under any other names, will have wished that various problems had been presented in a less popular dress and introduced with a less flippant phraseology. I can only refer them to the first word of my title and remind them that we are primarily out to be amused—not, it is true, without some hope of picking up morsels of knowledge by the way. If the manner is light, I can only say, in the words of Touchstone, that it is "an ill-favoured thing, sir, but my own; a poor humour of mine, sir."
As for the question of difficulty, some of the puzzles, especially in the Arithmetical and Algebraical category, are quite easy. Yet some of those examples that look the simplest should not be passed over without a little consideration, for now and again it will be found that there is some more or less subtle pitfall or trap into which the reader may be apt to fall. It is good exercise to cultivate the habit of being very wary over the exact wording of a puzzle. It teaches exactitude and caution. But some of the problems are very hard nuts indeed, and not unworthy of the attention of the advanced mathematician. Readers will doubtless select according to their individual tastes.
In many cases only the mere answers are given. This leaves the beginner something to do on his own behalf in working out the method of solution, and saves space that would be wasted from the point of view of the advanced student. On the other hand, in particular cases where it seemed likely to interest, I have given rather extensive solutions and treated problems in a general manner. It will often be found that the notes on one problem will serve to elucidate a good many others in the book; so that the reader's difficulties will sometimes be found cleared up as he advances. Where it is possible to say a thing in a manner that may be "understanded of the people" generally, I prefer to use this simple phraseology, and so engage the attention and interest of a larger public. The mathematician will in such cases have no difficulty in expressing the matter under consideration in terms of his familiar symbols.
I have taken the greatest care in reading the proofs, and trust that any errors that may have crept in are very few. If any such should occur, I can only plead, in the words of Horace, that "good Homer sometimes nods," or, as the bishop put it, "Not even the youngest curate in my diocese is infallible."
I have to express my thanks in particular to the proprietors of The Strand MagazineCassell's MagazineThe QueenTit-Bits, and The Weekly Dispatch for their courtesy in allowing me to reprint some of the puzzles that have appeared in their pages.
THE AUTHORS' CLUB
March 25, 1917